DESIGN GUIDE I

Ecological design as the biointegration of 5 sets of ecoinfrastructures to create constructed ecosystems.

systemic integration of ecosystem attributes

Ecosystem Atributes:

- biological structure
- biodiversity connectivity
- provision of ecosystem services
- ecosystems biointegration
- responsiveness to climate
- use and cycling of materials
- hydrology
- symbiosis
- homeostasis
- food production
- succession
* to be emulate, replicate and augmented constructed ecosystems

Green design is the biointegration of the following 5 constituents as ecoinfrastructure:

Nature

(as the ground zero context for all human being)

Human society

(Social, economic, political, institutional and cultural systems)

Hydrology

(to close the water cycle and bring water back to recharge the ground water and to discharge of rainfall to water waste, natural water in the climate)

Enerivy systems

Provide energy systems for human society existence and to conserve use of non-renewable energy. Designing for Net Zero Energy is to reduce non-renewable resource as the outcome of use of energy systems. The stages starts from optimising low embodied energy, passive mode to optimising mixed-mode and reduction of embodied energy in active system. With eventual objective to make use of renewable energy as much as possible to achieve near net zero dependency on non-renewable energy resources and reduction of carbon content.

Constructed ecosistems

Built environment is essentially that human society makes of use and dispose. These includes building infrastructures, artefacts, foods and products. The key objective is to reduce wastage and contaminating emissions to natural environment. Designing to allow for reuse and recycling (within built environment) with Net Zero Energy (where possible) and impact on the natural environment.

Achieving an effective, seamless and benign biointegration is a challenge for ecological design.

DESIGN GUIDE II

- NATURE (biointegration with other ecoinfrastructure)

Design for Net Positive Ecological Impact (NPEI) greening patterns (habitats creation)

phytoremediation

Planting and integration dense, native planting as urban forests in buildings and cities is scientifically proven to be one off the best ways that we can mitigate climate crisis. With our client, we have planted native urban forest in our building and planning projects.

Biodiversity Targets Matrix (identify species and habitats)
design of habitats within development to enhance local biodiversity

| Target Fauna Species |
| :--- | :--- |
| Cymopterus brachyotis |

Cynopterus brachyotis
Lesser Short-Nosed Fruit Bat CP Streptopelia chinensis
Spotted Dove Geopelia Striata
Zebra Dove Caprimulgus macrurus Large-tailed Nightjar Apus affinis

House Swift Megalaima haemacephala Coppersmith Barbe | Aegithina tiphia |
| :--- |
| Common Iora | Lanius schach Long-tailed Shrike Pynonotus goiavier

Yellow-vented Bulbul Oriolus chinensis \begin{tabular}{|l|}
\hline Black-naped Oriole

\hline Copsychus saularis

\hline

 Oriental Magpie-robin

Oriental Magpie-robi

\hline Gerygone sulphurea

\hline
\end{tabular}

a
emulate, replicate \& augment ecosystem attribute to create hybriid ecosystem

the biosphere

- biogeochemical processes - energy and material resources
- ecosystems

DESIGN GUIDE III

- HYDROLOGY (biontegation with othe e ecoinfrastucture)

Design for Net Zero Water (NZW) hydrology management integrated

methods to reduce runoff and improve water quality

intercept

infiltrate

filter

returning storm water back into the ground

DESIGN GUIDE IV

 - HUMAN SOCIETY (biointegraion with other econifrastucturue)Design for Net Well-being \& Happy Society (NW\&S)
what makes people happy?

happiness hormones

designing for health, happiness \& well-being designing public space and create pleasureable public realms

active edges

designing to enhance well-being \& happiness
rooftop aerial jogging track

DESIGN GUIDE V

- ENERGY SYSTEMS (biointegration with other ecoinfrastructure)

Design for Net Zero Energy / Carbon Neutral Design (NZE/CND) (reduce use of fossil fuels) design method
(1) Baseline enerayy level

 operation energy of built systems \& operational energy consumption (Energy Efficiency Index (kWh/squ/year)) following passive-mode design
*embodied energy assessment by others

mixed-mode strategies

- by building orientation
- by building configuration
- by operable facade / enclosural systems
- by optimising comfort conditions with partial

M\&E systems

- by natural verilalion (eg. during mid-seasons) - full mode strategies:
- by use of fans $\&$ extractirs \quad - by smart systems
- by ground source heaat pump \quad by high eticiciency M\&E systems
- by low embodied energy
productive mode strategies: - wind energy - solar energy
- geothermal energy
- off-site, on-site grieen power
minimise carbon footprint of operation energy of built systems \& operational energy consumption (Energy Efficiency Index (kWh/squm/year)) *embodied energy assessment by others

DESIGN GUIDE VI

- CONSTRUCTED ECOSYSTEMS (biointegration with other ecoinfrastructure)

Design for NetZero Waste / Emissions (NZW/E) the circular economy

general waste-to-energy cycle

the constructed ecosystem emulates and replicates ecosystem recycling

designing for smart sustainable cities
smart city systems (5G, WiFi 6, Al, IoT systems)

closed loop material cycle

Input on Planet's Natural Systems

Note:

- Design for reusability remanufacturability separability disassembly recyclability disposability
- Mininimze maintenannce and service waste Optimuzze energy use Extend product life
- Self product function Assure product satety Design for uppradability.

